Quantcast
Channel: Emerald: Multidiscipline Modeling in Materials and Structures: Table of Contents
Viewing all articles
Browse latest Browse all 48

Optimization of Ti-6Al-4V/AISI304 diffusion bonding process parameters using RSM and PSO algorithm

$
0
0
Multidiscipline Modeling in Materials and Structures, Ahead of Print.
Purpose The purpose of this paper is to develop an empirical relationship for predicting the strength of titanium to austenitic stainless steel fabricated by diffusion bonding (DB) process. Process parameters such as bonding pressure, bonding temperature and holding time play the main role in deciding the joint strength. Design/methodology/approach In this study, three-factors, five-level central composite rotatable design was used to conduct the minimum number of experiments involving all the combinations of parameters. Findings An empirical relationship was developed to predict the lap shear strength (LSS) of the joints incorporating DB process parameters. The developed empirical relationship was optimized using particle swarm optimization (PSO). The optimized value discovered through PSO was compared with the response surface methodology (RSM). The joints produced using bonding pressure of 14 MPa, bonding temperature of 900°C and holding time of 70 min exhibited a maximum LSS of 150.51 MPa in comparison with other joints. This was confirmed by constructing response graphs and contour plots. Originality/value Optimizing the DB parameters using RSM and PSO, PSO gives an accurate result when compared with RSM. Also, a sensitivity analysis is carried out to identify the most influencing parameter for the DB process.

Viewing all articles
Browse latest Browse all 48

Latest Images

Trending Articles





Latest Images